

Use the description to write each quadratic function in vertex form, $f(x) = a(x - h)^2 + k$ 5) The parent function $f(x) = x^2$ is reflected across the x - axis, compressed vertically by

 $\frac{1}{3}$, shifted right 7 units, and down 3 units.

Find the zeros of each function by factoring.

6) $5x^2 - 18x + 9 = 0$

Write a quadratic function in standard form for each given set of zeros.

8) -8 and 11

9) 2 and 13

Simplify each square root. Express each number in terms of *i* if needed. 10) $2\sqrt{-18}$ 11) $-\sqrt{-72}$ 12) $\sqrt{120}$

Solve each equation by taking the square root.

13) 3x² + 81 = 0

Solve each equation by completing the square.

15) x² - 2x + 4 = 0

16) 9x² + 36x - 108 = 0

Write each function in vertex form, and identify the vertex.

17) x^2 + 16x + 71 = 0

18) $x^2 - 6x - 13 = 0$

Vertex:	Vertex:	
Find the zeros of each function by using	the Quadratic Formula. $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$	
19) f(x) = 3x ² - 10x + 4	20) $f(x) = x^2 + 2x + 4$	
a = b = c =	a = b = c =	

Find the value of the discriminant (b^2 - 4ac) of each function and determine the number of solutions for each equation.

21) $f(x) = x^2 + x + 4$	22) $f(x) = -2x^2 + 3x + 1$	23) f(x) = $3x^2 + 6x + 3$
a = b = c =	a = b = c =	a = b = c =

Multiply complex numbers.	Write the result in the form a + b <i>i</i> .	
24) (4 - 8 <i>i</i>)(2 + 3 <i>i</i>)	25) $(-1 + 5i)^2$	

Evaluate powers of *i*. (*** remember $i^2 = -1$) 26) i^{11} 27) i^{20}

28) i⁶⁵

29) /¹⁰⁰

Solve.

- 30) A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will fall into the lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by $h(t) = -16t^2 + 64t + 80$
 - a) How long will it take for the rocket to reach its maximum height?
 - b) How high will the rocket be when it explodes?
 - c) How long will it take for the rocket to fall into the lake?

- 31) We are standing on the top of a 1680 feet tall building and throwing a small object upward. At every second, we measure the distance of the object from the ground. Exactly *t* seconds after we throw the object, its height (measured in feet) is $h(t) = -16t^2 + 256t + 1680$.
 - a) How long will it take for the object to reach its maximum height?
 - b) What is the object's maximum height?
 - c) How high will the object be after 10 seconds?
 - d) How long will it take for the object to reach the ground?

