\qquad

Lessons 2.3 and 2.4 Quiz Review

Block \qquad Date \qquad

Find the zeros of each function by factoring.

1) $x^{2}+6 x+9=0$
2) $5 r^{2}-9 r=2$

Box Method

3) $9 x^{2}-16=0$
4) $2 x^{2}-25 x+12=0$
5) $7 r^{2}+5 r=0$
6) $9 x^{2}+15 x=0$

Write a quadratic function in standard form for each given set of zeros.
7) -2 and 7
8) 1 and -8
9) 0 and -9

Find the zeros of each function by using a graph and table.
10) $f(x)=x^{2}+8 x+15$
$a=$ \qquad b $=$ \qquad $c=$ \qquad
Vertex: \qquad

Zeros: \qquad

\boldsymbol{x}					
\boldsymbol{y}					

Solve.
11) The quadratic function that approximates the height of a javelin thrown is $h(t)=-0.08 t^{2}+4.48$, where t is the time in seconds after it is thrown and h is the javelin's height in feet.
a. What is the javelin's maximum height?
b. How long will it take for the javelin to hit the ground?
12) The entrance to an athletic field is in the shape of a parabolic archway. The archway is modeled by the equation $d(x)=-x^{2}+12 x$, where $d(x)$ represents the distance, in feet, that the arch is above the ground for any horizontal distance x, in feet, across the ground.

a. What is the maximum height of the archway?
b. How wide is the archway?

Find the zeros of each equation by taking the square root.
13) $6 x^{2}-13=41$
14) $8 r^{2}+6=510$
15) $64 x^{2}-6=43$
16) $5 n^{2}-3=197$

Solve each equation by completing the square.
17) $x^{2}+14 x=24$
18) $4 x^{2}+32 x=-16$
19) $a^{2}-16 a-8=0$
20) $10 v^{2}-20 v-80=0$

Write each function in vertex form, and identify the vertex.
21) $x^{2}-4 x-17=0 \quad$ 22) $x^{2}+6 x+11=0$

Vertex = \qquad Vertex $=$ \qquad

