

5) 7r ² + 5r = 0	6) 9x ² + 15x = 0	No "c" Term

Write a quadratic function in standard form for each given set of zeros.				
7) -2 and 7	8) 1 and -8	9)	0 and -9	

Find the zeros of each function by using a graph and table.

10) f(x) = x² + 8x + 15 a = _____ b = ____ c = ____ Vertex: _____ Zeros: _____ x ____

Solve.

- 11) The quadratic function that approximates the height of a javelin thrown is
- $h(t) = -0.08t^2 + 4.48$, where t is the time in seconds after it is thrown and h is the javelin's height in feet.
 - a. What is the javelin's maximum height?
 - b. How long will it take for the javelin to hit the ground?

- 12) The entrance to an athletic field is in the shape of a parabolic archway. The archway is modeled by the equation $d(x) = -x^2 + 12x$, where d(x)represents the distance, in feet, that the arch is above the ground for any horizontal distance x, in feet, across the ground.
 - a. What is the maximum height of the archway?

b. How wide is the archway?

Find the zeros of each equation by taking the square root.

13) 6x² - 13 = 41

Solve each equation by completing the square.

17) $x^2 + 14x = 24$

19) a² - 16a - 8 = 0

20) $10v^2 - 20v - 80 = 0$

18)
$$4x^2 + 32x = -16$$

14) $8r^2 + 6 = 510$

Write each function in vertex form, and identify the vertex.

21) x² - 4x - 17 = 0

Vertex = _____

Vertex = _____